blob: 79525ae469cd25ebe0e5f7d123570314acdc149e [file] [log] [blame]
window.BENCHMARK_DATA = {
"lastUpdate": 1720640716630,
"repoUrl": "https://github.com/MPACT-ORG/mpact-compiler",
"entries": {
"Benchmark": [
{
"commit": {
"author": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"committer": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"id": "86dff1a36cbd620f2d73af763e949ec00d777239",
"message": "[mpact][benchmark] add regression benchmark to gh page",
"timestamp": "2024-06-27T22:22:10Z",
"url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/86dff1a36cbd620f2d73af763e949ec00d777239"
},
"date": 1719528535086,
"tool": "pytest",
"benches": [
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense",
"value": 6669.427405418031,
"unit": "iter/sec",
"range": "stddev: 0.000005968668091106435",
"extra": "mean: 149.93790909061124 usec\nrounds: 2057"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense",
"value": 34.302140003556715,
"unit": "iter/sec",
"range": "stddev: 0.0003297513733362601",
"extra": "mean: 29.15270009090722 msec\nrounds: 33"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense",
"value": 5915.897194757258,
"unit": "iter/sec",
"range": "stddev: 0.00003919411579877867",
"extra": "mean: 169.03606791649665 usec\nrounds: 1973"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense",
"value": 6002.4939914783945,
"unit": "iter/sec",
"range": "stddev: 0.000027105251732015887",
"extra": "mean: 166.59741790990168 usec\nrounds: 3551"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense",
"value": 948864.5687594158,
"unit": "iter/sec",
"range": "stddev: 1.8437976818208762e-7",
"extra": "mean: 1.0538911799683288 usec\nrounds: 144238"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense",
"value": 32.142115430220215,
"unit": "iter/sec",
"range": "stddev: 0.000630869582999464",
"extra": "mean: 31.111829032254484 msec\nrounds: 31"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse",
"value": 12377.336292065489,
"unit": "iter/sec",
"range": "stddev: 0.000005090184458909657",
"extra": "mean: 80.79282782686057 usec\nrounds: 3299"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse",
"value": 20.396281430385955,
"unit": "iter/sec",
"range": "stddev: 0.0003606405379378096",
"extra": "mean: 49.02854490476979 msec\nrounds: 21"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse",
"value": 210.87200147418721,
"unit": "iter/sec",
"range": "stddev: 0.0005598196294447149",
"extra": "mean: 4.742213252632355 msec\nrounds: 285"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse",
"value": 189.26652258818748,
"unit": "iter/sec",
"range": "stddev: 0.00010650763765171751",
"extra": "mean: 5.2835545680512865 msec\nrounds: 169"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse",
"value": 1093738.9035266023,
"unit": "iter/sec",
"range": "stddev: 8.140592632863567e-8",
"extra": "mean: 914.2949901257589 nsec\nrounds: 177589"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse",
"value": 21.33905041385192,
"unit": "iter/sec",
"range": "stddev: 0.002583893132946909",
"extra": "mean: 46.862441421051486 msec\nrounds: 19"
}
]
},
{
"commit": {
"author": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"committer": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"id": "4b3c2668ba82622c4923d8c4c9c1baa69c7ddacf",
"message": "[mpact][benchmark] add regression benchmark to gh page",
"timestamp": "2024-06-28T20:55:50Z",
"url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/4b3c2668ba82622c4923d8c4c9c1baa69c7ddacf"
},
"date": 1719612311853,
"tool": "pytest",
"benches": [
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense",
"value": 6751.379871492692,
"unit": "iter/sec",
"range": "stddev: 0.000009833798979422932",
"extra": "mean: 148.11786909257495 usec\nrounds: 1841"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense",
"value": 33.86474121597165,
"unit": "iter/sec",
"range": "stddev: 0.00026651849392417",
"extra": "mean: 29.529237906249506 msec\nrounds: 32"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense",
"value": 5758.930502711753,
"unit": "iter/sec",
"range": "stddev: 0.000044023333220703534",
"extra": "mean: 173.6433526206163 usec\nrounds: 1469"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense",
"value": 5777.4834942014395,
"unit": "iter/sec",
"range": "stddev: 0.000028187257621068578",
"extra": "mean: 173.0857389733174 usec\nrounds: 3582"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense",
"value": 953214.3513921018,
"unit": "iter/sec",
"range": "stddev: 1.9841163030042895e-7",
"extra": "mean: 1.0490819809202108 usec\nrounds: 136166"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense",
"value": 5.013373288554875,
"unit": "iter/sec",
"range": "stddev: 0.0011602113209591113",
"extra": "mean: 199.46649539999726 msec\nrounds: 5"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse",
"value": 12428.940664347065,
"unit": "iter/sec",
"range": "stddev: 0.000004762825437678532",
"extra": "mean: 80.45737983676612 usec\nrounds: 3075"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse",
"value": 21.516560306190904,
"unit": "iter/sec",
"range": "stddev: 0.0009302272687718569",
"extra": "mean: 46.47583004762488 msec\nrounds: 21"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse",
"value": 211.12310940718018,
"unit": "iter/sec",
"range": "stddev: 0.0009240317536763013",
"extra": "mean: 4.73657290671748 msec\nrounds: 268"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse",
"value": 186.48264407731656,
"unit": "iter/sec",
"range": "stddev: 0.00008089085350596589",
"extra": "mean: 5.362429329269888 msec\nrounds: 164"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse",
"value": 960641.0805626576,
"unit": "iter/sec",
"range": "stddev: 2.0111703200201038e-7",
"extra": "mean: 1.0409715139542954 usec\nrounds: 112020"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse",
"value": 23.421250169062198,
"unit": "iter/sec",
"range": "stddev: 0.0006716290731200427",
"extra": "mean: 42.69626910526444 msec\nrounds: 19"
}
]
},
{
"commit": {
"author": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"committer": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"id": "59fc5a073bebb037b2051bbe7c8a63dcf2ad82dc",
"message": "[mpact][benchmark] add regression benchmark to gh page",
"timestamp": "2024-06-28T20:55:50Z",
"url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/59fc5a073bebb037b2051bbe7c8a63dcf2ad82dc"
},
"date": 1719612806541,
"tool": "pytest",
"benches": [
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense",
"value": 5909.837407029962,
"unit": "iter/sec",
"range": "stddev: 0.000008143470165037013",
"extra": "mean: 169.2093929370145 usec\nrounds: 1784"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense",
"value": 34.25301200542631,
"unit": "iter/sec",
"range": "stddev: 0.0003366944250263363",
"extra": "mean: 29.19451287500152 msec\nrounds: 32"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense",
"value": 5882.077387952132,
"unit": "iter/sec",
"range": "stddev: 0.00003686250866771616",
"extra": "mean: 170.0079638612429 usec\nrounds: 2352"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense",
"value": 5877.128788845766,
"unit": "iter/sec",
"range": "stddev: 0.000029053414735450336",
"extra": "mean: 170.1511122059985 usec\nrounds: 3654"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense",
"value": 954326.869162598,
"unit": "iter/sec",
"range": "stddev: 2.122459628214424e-7",
"extra": "mean: 1.0478590012638742 usec\nrounds: 122760"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense",
"value": 4.968651510614152,
"unit": "iter/sec",
"range": "stddev: 0.0006829851952923742",
"extra": "mean: 201.26185099996974 msec\nrounds: 5"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse",
"value": 12373.282557341212,
"unit": "iter/sec",
"range": "stddev: 0.0000045490635324041385",
"extra": "mean: 80.81929717241351 usec\nrounds: 2830"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse",
"value": 21.285310885533054,
"unit": "iter/sec",
"range": "stddev: 0.0015616750096097195",
"extra": "mean: 46.980756136367646 msec\nrounds: 22"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse",
"value": 203.30817935712298,
"unit": "iter/sec",
"range": "stddev: 0.0007360380529483004",
"extra": "mean: 4.9186412625506835 msec\nrounds: 259"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse",
"value": 188.23867331086552,
"unit": "iter/sec",
"range": "stddev: 0.00010421745534155547",
"extra": "mean: 5.312404631903438 msec\nrounds: 163"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse",
"value": 949008.389438308,
"unit": "iter/sec",
"range": "stddev: 1.9566124260579267e-7",
"extra": "mean: 1.053731464473009 usec\nrounds: 181786"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse",
"value": 22.958249302316247,
"unit": "iter/sec",
"range": "stddev: 0.0018635426701932051",
"extra": "mean: 43.55732821052303 msec\nrounds: 19"
}
]
},
{
"commit": {
"author": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"committer": {
"name": "MPACT-ORG",
"username": "MPACT-ORG"
},
"id": "74f6291a82632c69528c283f0ad04fb7d5d65e63",
"message": "[mpact][benchmark] add regression benchmark to gh page",
"timestamp": "2024-06-28T20:55:50Z",
"url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/74f6291a82632c69528c283f0ad04fb7d5d65e63"
},
"date": 1719613791056,
"tool": "pytest",
"benches": [
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense",
"value": 5930.6630942960965,
"unit": "iter/sec",
"range": "stddev: 0.0000069901342084117",
"extra": "mean: 168.61520947999307 usec\nrounds: 1962"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense",
"value": 33.423283640985495,
"unit": "iter/sec",
"range": "stddev: 0.00028784114480996003",
"extra": "mean: 29.919262593748996 msec\nrounds: 32"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense",
"value": 5977.873004640322,
"unit": "iter/sec",
"range": "stddev: 0.00003787120701808724",
"extra": "mean: 167.28358050158485 usec\nrounds: 2031"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense",
"value": 5940.8924212876955,
"unit": "iter/sec",
"range": "stddev: 0.00002705331572346874",
"extra": "mean: 168.32487934249596 usec\nrounds: 3713"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense",
"value": 949863.7726585709,
"unit": "iter/sec",
"range": "stddev: 1.791786568219964e-7",
"extra": "mean: 1.0527825450181165 usec\nrounds: 148302"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense",
"value": 5.032923153686416,
"unit": "iter/sec",
"range": "stddev: 0.0007107591068022317",
"extra": "mean: 198.69168860000173 msec\nrounds: 5"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse",
"value": 12511.47988615229,
"unit": "iter/sec",
"range": "stddev: 0.0000035197064279101048",
"extra": "mean: 79.92659614205992 usec\nrounds: 3162"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse",
"value": 21.745137400062706,
"unit": "iter/sec",
"range": "stddev: 0.0007012204676885401",
"extra": "mean: 45.987292772733475 msec\nrounds: 22"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse",
"value": 211.26695216957415,
"unit": "iter/sec",
"range": "stddev: 0.0006688596361050787",
"extra": "mean: 4.733347973881625 msec\nrounds: 268"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse",
"value": 189.42893402892727,
"unit": "iter/sec",
"range": "stddev: 0.00008632489640648543",
"extra": "mean: 5.279024585796868 msec\nrounds: 169"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse",
"value": 952227.2227348501,
"unit": "iter/sec",
"range": "stddev: 1.9643415939790627e-7",
"extra": "mean: 1.0501695142971692 usec\nrounds: 198060"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse",
"value": 5.006633223271329,
"unit": "iter/sec",
"range": "stddev: 0.0015691836550795323",
"extra": "mean: 199.73502259999805 msec\nrounds: 5"
}
]
},
{
"commit": {
"author": {
"email": "yinyingli@google.com",
"name": "Yinying Li",
"username": "yinying-lisa-li"
},
"committer": {
"email": "noreply@github.com",
"name": "GitHub",
"username": "web-flow"
},
"distinct": true,
"id": "aa8d896a77995ddf35fc50d9e06e5e121d047610",
"message": "[mpact][benchmark] set up regression benchmark for each commit with graphs (#58)",
"timestamp": "2024-07-02T15:28:13-04:00",
"tree_id": "c9c7befb6fd06fbbcd1209bda7e13fcb6950ed34",
"url": "https://github.com/MPACT-ORG/mpact-compiler/commit/aa8d896a77995ddf35fc50d9e06e5e121d047610"
},
"date": 1719948752248,
"tool": "pytest",
"benches": [
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense",
"value": 5852.580803673562,
"unit": "iter/sec",
"range": "stddev: 0.000008098366418064155",
"extra": "mean: 170.86479171245574 usec\nrounds: 1834"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense",
"value": 34.43076839022791,
"unit": "iter/sec",
"range": "stddev: 0.0006086274806415394",
"extra": "mean: 29.043789806440056 msec\nrounds: 31"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense",
"value": 5802.733470460277,
"unit": "iter/sec",
"range": "stddev: 0.00004454435239320872",
"extra": "mean: 172.33257482713216 usec\nrounds: 2018"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense",
"value": 5671.297426386338,
"unit": "iter/sec",
"range": "stddev: 0.00003430388155974315",
"extra": "mean: 176.32649547657113 usec\nrounds: 3316"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense",
"value": 986318.2783261854,
"unit": "iter/sec",
"range": "stddev: 1.8088304088312995e-7",
"extra": "mean: 1.0138715077824907 usec\nrounds: 128140"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense",
"value": 31.24834710280663,
"unit": "iter/sec",
"range": "stddev: 0.00043359108481316527",
"extra": "mean: 32.00169265625519 msec\nrounds: 32"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse",
"value": 12359.856575331278,
"unit": "iter/sec",
"range": "stddev: 0.000004186711076895069",
"extra": "mean: 80.90708770811099 usec\nrounds: 3352"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse",
"value": 19.952093711859064,
"unit": "iter/sec",
"range": "stddev: 0.0009396451401827426",
"extra": "mean: 50.12005328571723 msec\nrounds: 21"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse",
"value": 214.1812644000171,
"unit": "iter/sec",
"range": "stddev: 0.0005696395902098518",
"extra": "mean: 4.668942462363763 msec\nrounds: 279"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse",
"value": 187.5572338761418,
"unit": "iter/sec",
"range": "stddev: 0.00010297395640425473",
"extra": "mean: 5.331705844309772 msec\nrounds: 167"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse",
"value": 976700.9973067238,
"unit": "iter/sec",
"range": "stddev: 1.9521875916230403e-7",
"extra": "mean: 1.0238547956411674 usec\nrounds: 174795"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse",
"value": 21.71808296320426,
"unit": "iter/sec",
"range": "stddev: 0.00019562198685462142",
"extra": "mean: 46.04457961111229 msec\nrounds: 18"
}
]
},
{
"commit": {
"author": {
"email": "ajcbik@google.com",
"name": "Aart Bik",
"username": "aartbik"
},
"committer": {
"email": "noreply@github.com",
"name": "GitHub",
"username": "web-flow"
},
"distinct": true,
"id": "6dbb592d6176f77c3267b33c55ee6a611b191454",
"message": "[mpact][compiler] add training loop to models with simple test (#60)\n\n* [mpact][compiler] add training loop to models with simple test\r\n\r\nNote that although MPACT currently does not support autograd yet,\r\neventually we need to support this too. The current PR adds a very\r\nsimple training loop to the models, together with a simple neural\r\nnetwork that uses the training loop to learn classification of\r\nsimple sparse/dense tensors in a toy training set.\r\n\r\n* linter for darker (I tested with black?!)",
"timestamp": "2024-07-10T12:39:05-07:00",
"tree_id": "4d9b1fd9d8433e1ff5a993d2d4c7f06bf2a23e4a",
"url": "https://github.com/MPACT-ORG/mpact-compiler/commit/6dbb592d6176f77c3267b33c55ee6a611b191454"
},
"date": 1720640716175,
"tool": "pytest",
"benches": [
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense",
"value": 6667.307948970807,
"unit": "iter/sec",
"range": "stddev: 0.000009798278337849673",
"extra": "mean: 149.98557253596846 usec\nrounds: 1806"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense",
"value": 32.68306054747386,
"unit": "iter/sec",
"range": "stddev: 0.0002796872576339917",
"extra": "mean: 30.596889741933673 msec\nrounds: 31"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense",
"value": 5081.997194601598,
"unit": "iter/sec",
"range": "stddev: 0.00005778801050901175",
"extra": "mean: 196.77303266956937 usec\nrounds: 1255"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense",
"value": 5379.457621769102,
"unit": "iter/sec",
"range": "stddev: 0.00004383342499593898",
"extra": "mean: 185.89234646134037 usec\nrounds: 1752"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense",
"value": 958591.6369178214,
"unit": "iter/sec",
"range": "stddev: 2.287062410905891e-7",
"extra": "mean: 1.0431970836041504 usec\nrounds: 108969"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense",
"value": 31.187072550165258,
"unit": "iter/sec",
"range": "stddev: 0.00040573286387233435",
"extra": "mean: 32.06456772726817 msec\nrounds: 33"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse",
"value": 12337.291032437339,
"unit": "iter/sec",
"range": "stddev: 0.000004143615251923706",
"extra": "mean: 81.05507095283635 usec\nrounds: 3002"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse",
"value": 19.884055989984745,
"unit": "iter/sec",
"range": "stddev: 0.003329928946623915",
"extra": "mean: 50.2915502000036 msec\nrounds: 20"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse",
"value": 211.98538008269045,
"unit": "iter/sec",
"range": "stddev: 0.0005443079330878848",
"extra": "mean: 4.717306446368725 msec\nrounds: 289"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse",
"value": 186.18716697079282,
"unit": "iter/sec",
"range": "stddev: 0.00009675966320232993",
"extra": "mean: 5.37093944910215 msec\nrounds: 167"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse",
"value": 975658.2476396016,
"unit": "iter/sec",
"range": "stddev: 2.2318166872127397e-7",
"extra": "mean: 1.0249490561057504 usec\nrounds: 104625"
},
{
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse",
"value": 20.124128779092676,
"unit": "iter/sec",
"range": "stddev: 0.001882759082698598",
"extra": "mean: 49.69159216665907 msec\nrounds: 18"
}
]
}
]
}
}