blob: 89b317e418a4a07a14a66cc0c3b623c505f56040 [file] [log] [blame]
import torch
import numpy as np
from mpact.models.resnet import resnet_20
from mpact_benchmark.utils.benchmark_utils import benchmark, Backends
@benchmark(
[
{
"name": f"{fmt}_{shape}_{dtype.__name__}",
"shape": shape,
"formats": fmt,
"dtype": dtype,
"drange": (1, 100),
"sparsity": [0.5, 0.9],
# TODO: Torch inductor requires lower precision with larger input size,
# such as [8, 3, 32, 32].
"precision": 1e-3,
"backends": [b for b in Backends],
}
for shape in [
[[1, 3, 16, 16]],
]
for fmt in [["dense"]]
for dtype in [np.float32]
]
)
def resnet() -> torch.nn.Module:
"""Restnet20 model."""
resnet_model = resnet_20()
resnet_model.train(False)
return resnet_model
if __name__ == "__main__":
resnet()