|  | # RUN: %PYTHON %s | FileCheck %s | 
|  |  | 
|  | import torch | 
|  |  | 
|  | from mpact.mpactbackend import mpact_jit | 
|  |  | 
|  | from mpact.models.kernels import MVNet | 
|  |  | 
|  | net = MVNet() | 
|  |  | 
|  | # Get a fixed vector and matrix (which we make 2x2 block "sparse"). | 
|  | dense_vector = torch.arange(1, 11, dtype=torch.float32) | 
|  | dense_input = torch.arange(1, 101, dtype=torch.float32).view(10, 10) | 
|  | sparse_matrix = dense_input.to_sparse_bsr(blocksize=(2, 2)) | 
|  |  | 
|  | # | 
|  | # CHECK: pytorch | 
|  | # CHECK:   tensor([ 385.,  935., 1485., 2035., 2585., 3135., 3685., 4235., 4785., 5335.]) | 
|  | # CHECK: mpact | 
|  | # CHECK:   [ 385.  935. 1485. 2035. 2585. 3135. 3685. 4235. 4785. 5335.] | 
|  | # | 
|  |  | 
|  | # Run it with PyTorch. | 
|  | print("pytorch") | 
|  | res = net(sparse_matrix, dense_vector) | 
|  | print(res) | 
|  |  | 
|  | # Run it with MPACT. | 
|  | print("mpact") | 
|  | res = mpact_jit(net, sparse_matrix, dense_vector) | 
|  | print(res) |