| window.BENCHMARK_DATA = { |
| "lastUpdate": 1726171671142, |
| "repoUrl": "https://github.com/MPACT-ORG/mpact-compiler", |
| "entries": { |
| "Benchmark": [ |
| { |
| "commit": { |
| "author": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "committer": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "id": "86dff1a36cbd620f2d73af763e949ec00d777239", |
| "message": "[mpact][benchmark] add regression benchmark to gh page", |
| "timestamp": "2024-06-27T22:22:10Z", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/86dff1a36cbd620f2d73af763e949ec00d777239" |
| }, |
| "date": 1719528535086, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6669.427405418031, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005968668091106435", |
| "extra": "mean: 149.93790909061124 usec\nrounds: 2057" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.302140003556715, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003297513733362601", |
| "extra": "mean: 29.15270009090722 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5915.897194757258, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003919411579877867", |
| "extra": "mean: 169.03606791649665 usec\nrounds: 1973" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 6002.4939914783945, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000027105251732015887", |
| "extra": "mean: 166.59741790990168 usec\nrounds: 3551" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 948864.5687594158, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8437976818208762e-7", |
| "extra": "mean: 1.0538911799683288 usec\nrounds: 144238" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 32.142115430220215, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000630869582999464", |
| "extra": "mean: 31.111829032254484 msec\nrounds: 31" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12377.336292065489, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005090184458909657", |
| "extra": "mean: 80.79282782686057 usec\nrounds: 3299" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.396281430385955, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003606405379378096", |
| "extra": "mean: 49.02854490476979 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 210.87200147418721, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005598196294447149", |
| "extra": "mean: 4.742213252632355 msec\nrounds: 285" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 189.26652258818748, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00010650763765171751", |
| "extra": "mean: 5.2835545680512865 msec\nrounds: 169" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 1093738.9035266023, |
| "unit": "iter/sec", |
| "range": "stddev: 8.140592632863567e-8", |
| "extra": "mean: 914.2949901257589 nsec\nrounds: 177589" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.33905041385192, |
| "unit": "iter/sec", |
| "range": "stddev: 0.002583893132946909", |
| "extra": "mean: 46.862441421051486 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "committer": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "id": "4b3c2668ba82622c4923d8c4c9c1baa69c7ddacf", |
| "message": "[mpact][benchmark] add regression benchmark to gh page", |
| "timestamp": "2024-06-28T20:55:50Z", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/4b3c2668ba82622c4923d8c4c9c1baa69c7ddacf" |
| }, |
| "date": 1719612311853, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6751.379871492692, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000009833798979422932", |
| "extra": "mean: 148.11786909257495 usec\nrounds: 1841" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.86474121597165, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00026651849392417", |
| "extra": "mean: 29.529237906249506 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5758.930502711753, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000044023333220703534", |
| "extra": "mean: 173.6433526206163 usec\nrounds: 1469" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5777.4834942014395, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000028187257621068578", |
| "extra": "mean: 173.0857389733174 usec\nrounds: 3582" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 953214.3513921018, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9841163030042895e-7", |
| "extra": "mean: 1.0490819809202108 usec\nrounds: 136166" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 5.013373288554875, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0011602113209591113", |
| "extra": "mean: 199.46649539999726 msec\nrounds: 5" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12428.940664347065, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004762825437678532", |
| "extra": "mean: 80.45737983676612 usec\nrounds: 3075" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 21.516560306190904, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009302272687718569", |
| "extra": "mean: 46.47583004762488 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 211.12310940718018, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009240317536763013", |
| "extra": "mean: 4.73657290671748 msec\nrounds: 268" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 186.48264407731656, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00008089085350596589", |
| "extra": "mean: 5.362429329269888 msec\nrounds: 164" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 960641.0805626576, |
| "unit": "iter/sec", |
| "range": "stddev: 2.0111703200201038e-7", |
| "extra": "mean: 1.0409715139542954 usec\nrounds: 112020" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 23.421250169062198, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006716290731200427", |
| "extra": "mean: 42.69626910526444 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "committer": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "id": "59fc5a073bebb037b2051bbe7c8a63dcf2ad82dc", |
| "message": "[mpact][benchmark] add regression benchmark to gh page", |
| "timestamp": "2024-06-28T20:55:50Z", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/59fc5a073bebb037b2051bbe7c8a63dcf2ad82dc" |
| }, |
| "date": 1719612806541, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5909.837407029962, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000008143470165037013", |
| "extra": "mean: 169.2093929370145 usec\nrounds: 1784" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.25301200542631, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003366944250263363", |
| "extra": "mean: 29.19451287500152 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5882.077387952132, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003686250866771616", |
| "extra": "mean: 170.0079638612429 usec\nrounds: 2352" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5877.128788845766, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000029053414735450336", |
| "extra": "mean: 170.1511122059985 usec\nrounds: 3654" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 954326.869162598, |
| "unit": "iter/sec", |
| "range": "stddev: 2.122459628214424e-7", |
| "extra": "mean: 1.0478590012638742 usec\nrounds: 122760" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 4.968651510614152, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006829851952923742", |
| "extra": "mean: 201.26185099996974 msec\nrounds: 5" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12373.282557341212, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000045490635324041385", |
| "extra": "mean: 80.81929717241351 usec\nrounds: 2830" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 21.285310885533054, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0015616750096097195", |
| "extra": "mean: 46.980756136367646 msec\nrounds: 22" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 203.30817935712298, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007360380529483004", |
| "extra": "mean: 4.9186412625506835 msec\nrounds: 259" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 188.23867331086552, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00010421745534155547", |
| "extra": "mean: 5.312404631903438 msec\nrounds: 163" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 949008.389438308, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9566124260579267e-7", |
| "extra": "mean: 1.053731464473009 usec\nrounds: 181786" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 22.958249302316247, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0018635426701932051", |
| "extra": "mean: 43.55732821052303 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "committer": { |
| "name": "MPACT-ORG", |
| "username": "MPACT-ORG" |
| }, |
| "id": "74f6291a82632c69528c283f0ad04fb7d5d65e63", |
| "message": "[mpact][benchmark] add regression benchmark to gh page", |
| "timestamp": "2024-06-28T20:55:50Z", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/pull/52/commits/74f6291a82632c69528c283f0ad04fb7d5d65e63" |
| }, |
| "date": 1719613791056, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5930.6630942960965, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000069901342084117", |
| "extra": "mean: 168.61520947999307 usec\nrounds: 1962" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.423283640985495, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00028784114480996003", |
| "extra": "mean: 29.919262593748996 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5977.873004640322, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003787120701808724", |
| "extra": "mean: 167.28358050158485 usec\nrounds: 2031" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5940.8924212876955, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00002705331572346874", |
| "extra": "mean: 168.32487934249596 usec\nrounds: 3713" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 949863.7726585709, |
| "unit": "iter/sec", |
| "range": "stddev: 1.791786568219964e-7", |
| "extra": "mean: 1.0527825450181165 usec\nrounds: 148302" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 5.032923153686416, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007107591068022317", |
| "extra": "mean: 198.69168860000173 msec\nrounds: 5" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12511.47988615229, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000035197064279101048", |
| "extra": "mean: 79.92659614205992 usec\nrounds: 3162" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 21.745137400062706, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007012204676885401", |
| "extra": "mean: 45.987292772733475 msec\nrounds: 22" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 211.26695216957415, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006688596361050787", |
| "extra": "mean: 4.733347973881625 msec\nrounds: 268" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 189.42893402892727, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00008632489640648543", |
| "extra": "mean: 5.279024585796868 msec\nrounds: 169" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 952227.2227348501, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9643415939790627e-7", |
| "extra": "mean: 1.0501695142971692 usec\nrounds: 198060" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 5.006633223271329, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0015691836550795323", |
| "extra": "mean: 199.73502259999805 msec\nrounds: 5" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "yinyingli@google.com", |
| "name": "Yinying Li", |
| "username": "yinying-lisa-li" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "aa8d896a77995ddf35fc50d9e06e5e121d047610", |
| "message": "[mpact][benchmark] set up regression benchmark for each commit with graphs (#58)", |
| "timestamp": "2024-07-02T15:28:13-04:00", |
| "tree_id": "c9c7befb6fd06fbbcd1209bda7e13fcb6950ed34", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/aa8d896a77995ddf35fc50d9e06e5e121d047610" |
| }, |
| "date": 1719948752248, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5852.580803673562, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000008098366418064155", |
| "extra": "mean: 170.86479171245574 usec\nrounds: 1834" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.43076839022791, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006086274806415394", |
| "extra": "mean: 29.043789806440056 msec\nrounds: 31" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5802.733470460277, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00004454435239320872", |
| "extra": "mean: 172.33257482713216 usec\nrounds: 2018" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5671.297426386338, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003430388155974315", |
| "extra": "mean: 176.32649547657113 usec\nrounds: 3316" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 986318.2783261854, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8088304088312995e-7", |
| "extra": "mean: 1.0138715077824907 usec\nrounds: 128140" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.24834710280663, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00043359108481316527", |
| "extra": "mean: 32.00169265625519 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12359.856575331278, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004186711076895069", |
| "extra": "mean: 80.90708770811099 usec\nrounds: 3352" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.952093711859064, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009396451401827426", |
| "extra": "mean: 50.12005328571723 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 214.1812644000171, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005696395902098518", |
| "extra": "mean: 4.668942462363763 msec\nrounds: 279" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 187.5572338761418, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00010297395640425473", |
| "extra": "mean: 5.331705844309772 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 976700.9973067238, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9521875916230403e-7", |
| "extra": "mean: 1.0238547956411674 usec\nrounds: 174795" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.71808296320426, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00019562198685462142", |
| "extra": "mean: 46.04457961111229 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "6dbb592d6176f77c3267b33c55ee6a611b191454", |
| "message": "[mpact][compiler] add training loop to models with simple test (#60)\n\n* [mpact][compiler] add training loop to models with simple test\r\n\r\nNote that although MPACT currently does not support autograd yet,\r\neventually we need to support this too. The current PR adds a very\r\nsimple training loop to the models, together with a simple neural\r\nnetwork that uses the training loop to learn classification of\r\nsimple sparse/dense tensors in a toy training set.\r\n\r\n* linter for darker (I tested with black?!)", |
| "timestamp": "2024-07-10T12:39:05-07:00", |
| "tree_id": "4d9b1fd9d8433e1ff5a993d2d4c7f06bf2a23e4a", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/6dbb592d6176f77c3267b33c55ee6a611b191454" |
| }, |
| "date": 1720640716175, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6667.307948970807, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000009798278337849673", |
| "extra": "mean: 149.98557253596846 usec\nrounds: 1806" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 32.68306054747386, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0002796872576339917", |
| "extra": "mean: 30.596889741933673 msec\nrounds: 31" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5081.997194601598, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00005778801050901175", |
| "extra": "mean: 196.77303266956937 usec\nrounds: 1255" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5379.457621769102, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00004383342499593898", |
| "extra": "mean: 185.89234646134037 usec\nrounds: 1752" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 958591.6369178214, |
| "unit": "iter/sec", |
| "range": "stddev: 2.287062410905891e-7", |
| "extra": "mean: 1.0431970836041504 usec\nrounds: 108969" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.187072550165258, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00040573286387233435", |
| "extra": "mean: 32.06456772726817 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12337.291032437339, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004143615251923706", |
| "extra": "mean: 81.05507095283635 usec\nrounds: 3002" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.884055989984745, |
| "unit": "iter/sec", |
| "range": "stddev: 0.003329928946623915", |
| "extra": "mean: 50.2915502000036 msec\nrounds: 20" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 211.98538008269045, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005443079330878848", |
| "extra": "mean: 4.717306446368725 msec\nrounds: 289" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 186.18716697079282, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00009675966320232993", |
| "extra": "mean: 5.37093944910215 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 975658.2476396016, |
| "unit": "iter/sec", |
| "range": "stddev: 2.2318166872127397e-7", |
| "extra": "mean: 1.0249490561057504 usec\nrounds: 104625" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.124128779092676, |
| "unit": "iter/sec", |
| "range": "stddev: 0.001882759082698598", |
| "extra": "mean: 49.69159216665907 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "yinyingli@google.com", |
| "name": "Yinying Li", |
| "username": "yinying-lisa-li" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "13c317b1f47932db8043fc742e4d6d785af90796", |
| "message": "[mpact][profiler] Add utils for profiling Python programs and torch ops (#59)", |
| "timestamp": "2024-07-10T16:27:00-04:00", |
| "tree_id": "f410eefea9c1a0c21f9fccca8d9f75cc3859c921", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/13c317b1f47932db8043fc742e4d6d785af90796" |
| }, |
| "date": 1720643491530, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5882.730909058561, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000007809343889197068", |
| "extra": "mean: 169.9890774300323 usec\nrounds: 1821" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 35.8260453730093, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004098903292627477", |
| "extra": "mean: 27.912653757575548 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5973.903357378356, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000029854003888673223", |
| "extra": "mean: 167.39474011826823 usec\nrounds: 2378" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5999.677258304794, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00002214935446779071", |
| "extra": "mean: 166.67563219601408 usec\nrounds: 3839" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 950491.2651393854, |
| "unit": "iter/sec", |
| "range": "stddev: 2.0270360800891412e-7", |
| "extra": "mean: 1.0520875221860713 usec\nrounds: 138639" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 33.43772340642905, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00032030927763137976", |
| "extra": "mean: 29.90634224241865 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12432.257811160736, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004436719488251673", |
| "extra": "mean: 80.43591238127928 usec\nrounds: 3150" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.156932740504175, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007951352667646836", |
| "extra": "mean: 49.610722666676295 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 206.25422280035204, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005294618156626811", |
| "extra": "mean: 4.848385581748648 msec\nrounds: 263" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 186.95337637042098, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00022424510447555433", |
| "extra": "mean: 5.348927200002235 msec\nrounds: 170" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 960457.8018581292, |
| "unit": "iter/sec", |
| "range": "stddev: 2.443018316368644e-7", |
| "extra": "mean: 1.041170156632984 usec\nrounds: 120395" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.143431877300007, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0023997890490843788", |
| "extra": "mean: 47.29601163156578 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "466aed65269e4d9d17a4f4e5b737d3184d60e679", |
| "message": "[mpact][compiler] only import what you need in tests (#61)", |
| "timestamp": "2024-07-10T13:42:27-07:00", |
| "tree_id": "a96ce0dcd9a60503583756c90cf7c618d31f2fdf", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/466aed65269e4d9d17a4f4e5b737d3184d60e679" |
| }, |
| "date": 1720644423077, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5892.849972887261, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004959268193198534", |
| "extra": "mean: 169.69717617128472 usec\nrounds: 1771" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.68541262005039, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00044738449261459793", |
| "extra": "mean: 28.830563757570403 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5806.271338374302, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00004927253595346353", |
| "extra": "mean: 172.2275694197905 usec\nrounds: 2204" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5826.095561160015, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003290846321017504", |
| "extra": "mean: 171.6415375447246 usec\nrounds: 3609" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 966125.627784602, |
| "unit": "iter/sec", |
| "range": "stddev: 1.838781261933848e-7", |
| "extra": "mean: 1.035062078099589 usec\nrounds: 144447" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.13639062389227, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00043796326986517375", |
| "extra": "mean: 32.11676048387759 msec\nrounds: 31" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12356.607210939963, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000003996111306778252", |
| "extra": "mean: 80.92836350051223 usec\nrounds: 3326" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.92411439930273, |
| "unit": "iter/sec", |
| "range": "stddev: 0.001130257434495826", |
| "extra": "mean: 50.19043657142404 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 204.3538353123811, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006957100557737918", |
| "extra": "mean: 4.893473119657243 msec\nrounds: 234" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 188.81403914912207, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00020072138852544395", |
| "extra": "mean: 5.296216343373795 msec\nrounds: 166" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 971022.1186577489, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9237787835734797e-7", |
| "extra": "mean: 1.0298426583549996 usec\nrounds: 196890" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 19.598736962010374, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0033167102573383195", |
| "extra": "mean: 51.02369616666477 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "yinyingli@google.com", |
| "name": "Yinying Li", |
| "username": "yinying-lisa-li" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "2f8cf9d04b426ca4895c17f39dd1a1df4632af9a", |
| "message": "Update README.md (#62)\n\nadd info for pip install and performance tracking.", |
| "timestamp": "2024-07-10T17:11:30-04:00", |
| "tree_id": "673633ab88ea05b611089784a38edb7cb96d6f04", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/2f8cf9d04b426ca4895c17f39dd1a1df4632af9a" |
| }, |
| "date": 1720646184454, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5567.115407135617, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000007841718427423878", |
| "extra": "mean: 179.6262385217048 usec\nrounds: 1786" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.309292420925736, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00028773048371934126", |
| "extra": "mean: 30.021652437497437 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5617.572222361392, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000046885770008036976", |
| "extra": "mean: 178.012842633226 usec\nrounds: 1595" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5605.020685394918, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003302817260819787", |
| "extra": "mean: 178.41147359290113 usec\nrounds: 2897" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 990990.6666835662, |
| "unit": "iter/sec", |
| "range": "stddev: 1.7844414339485182e-7", |
| "extra": "mean: 1.0090912393217428 usec\nrounds: 131840" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.53526822110171, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0015008376083111511", |
| "extra": "mean: 31.710527812503386 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12410.86842730023, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000048379110808968955", |
| "extra": "mean: 80.57453882923265 usec\nrounds: 3348" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.01479085419484, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006618735765434783", |
| "extra": "mean: 49.963050190475165 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 197.71393986199735, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007309446772089394", |
| "extra": "mean: 5.057812315600971 msec\nrounds: 282" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 183.32305573422838, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00023267992206215093", |
| "extra": "mean: 5.4548512514964 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 986761.515348736, |
| "unit": "iter/sec", |
| "range": "stddev: 2.1567528682233168e-7", |
| "extra": "mean: 1.0134160933977905 usec\nrounds: 137099" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 19.455210605295285, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0022573877507840855", |
| "extra": "mean: 51.4001117894772 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "7a3453a08b73ca33da9e9fa8fad7681ad3c976b0", |
| "message": "[mpact][compiler] add number of model parameters utility (#63)\n\nAlso addressed recent change in softmax that now\r\nrequires an explicit dimension.", |
| "timestamp": "2024-07-29T11:36:51-07:00", |
| "tree_id": "366c91d2b4fadbc4ee3433c3a90a5c8d9c8db6c2", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/7a3453a08b73ca33da9e9fa8fad7681ad3c976b0" |
| }, |
| "date": 1722284275381, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5931.531796377585, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005071652574157599", |
| "extra": "mean: 168.59051495107974 usec\nrounds: 1841" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.17216628975288, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003879271410842336", |
| "extra": "mean: 30.145755066617614 msec\nrounds: 30" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5993.630576633229, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00005130980458592646", |
| "extra": "mean: 166.84378311512899 usec\nrounds: 2001" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 6026.845263496956, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003853748350657001", |
| "extra": "mean: 165.92428646820278 usec\nrounds: 3236" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 930182.4358174265, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9286678694588592e-7", |
| "extra": "mean: 1.0750579257296116 usec\nrounds: 151241" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 30.6254668808703, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004432793010911175", |
| "extra": "mean: 32.652563433233205 msec\nrounds: 30" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12610.369889780228, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000037063043510125626", |
| "extra": "mean: 79.29981505224728 usec\nrounds: 3309" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.823408433315738, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0016338304580261606", |
| "extra": "mean: 50.44541171433333 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 211.21185128256394, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005156879693893586", |
| "extra": "mean: 4.734582808339564 msec\nrounds: 313" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 188.4251600153681, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00009347137844844848", |
| "extra": "mean: 5.3071468795273375 msec\nrounds: 166" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 934284.923747403, |
| "unit": "iter/sec", |
| "range": "stddev: 1.6748386044850867e-7", |
| "extra": "mean: 1.0703372970945682 usec\nrounds: 183790" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.37777709213178, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0014637046687307853", |
| "extra": "mean: 46.7775482778355 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "77bb923bc7cfbf89efae4ac29bf0ff19b55abc6f", |
| "message": "[mpact][benchmark] add sparsity safety to tensor generator (#64)", |
| "timestamp": "2024-07-30T10:47:15-07:00", |
| "tree_id": "101c3e1737a0696e2cfd8f8907314c5d97efd7d5", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/77bb923bc7cfbf89efae4ac29bf0ff19b55abc6f" |
| }, |
| "date": 1722361981743, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5795.275013415691, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000006064806960702917", |
| "extra": "mean: 172.5543650102996 usec\nrounds: 1852" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 35.863891577762125, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004447298007974386", |
| "extra": "mean: 27.883198281250188 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 6047.643787788464, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003405649333583595", |
| "extra": "mean: 165.3536542643636 usec\nrounds: 2392" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5744.125294869495, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00002674640128152646", |
| "extra": "mean: 174.09091004563817 usec\nrounds: 3713" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 948162.1425501032, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8300474994805548e-7", |
| "extra": "mean: 1.0546719333367156 usec\nrounds: 151012" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 32.277523192943505, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006679373626811565", |
| "extra": "mean: 30.981311484848362 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12509.23792235964, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000037535042530120306", |
| "extra": "mean: 79.94092095830632 usec\nrounds: 3340" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.832590534506693, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0038166136959731593", |
| "extra": "mean: 50.4220564761876 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 201.70070695431244, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007768376000905954", |
| "extra": "mean: 4.957840828126159 msec\nrounds: 320" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 189.87909027344634, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000064124520738428", |
| "extra": "mean: 5.266509327382453 msec\nrounds: 168" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 950653.7871268686, |
| "unit": "iter/sec", |
| "range": "stddev: 1.7578892974751308e-7", |
| "extra": "mean: 1.0519076592775893 usec\nrounds: 198060" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.29335487555175, |
| "unit": "iter/sec", |
| "range": "stddev: 0.004256158745070551", |
| "extra": "mean: 49.277214444455495 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "f37a36c213c593245e7da4c1c1e085986e993556", |
| "message": "[mpact][benchmark] manual sum of squares benchmark (#65)\n\n* [mpact][benchmark] manual sum of squares benchmark\r\n\r\nThis introduces a \"manual\" benchmark where we can put\r\nsome benchmarking code but without negatively adding\r\nmore load on the regular benchmark suite times.\r\n\r\n* use 4K instead of 1K\r\n\r\n* lint\r\n\r\n* undo edits", |
| "timestamp": "2024-07-30T15:14:56-07:00", |
| "tree_id": "39168f032bdcc8a083c5f708173a6e9aec58cac4", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/f37a36c213c593245e7da4c1c1e085986e993556" |
| }, |
| "date": 1722377987492, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5891.215859330467, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000009263101696785644", |
| "extra": "mean: 169.74424700738254 usec\nrounds: 1838" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.831555094827095, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000355854570805469", |
| "extra": "mean: 28.709599593746304 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5445.977050205876, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003580323977868441", |
| "extra": "mean: 183.62178003710034 usec\nrounds: 2164" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5625.905057197205, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000028657618654726816", |
| "extra": "mean: 177.74917810258864 usec\nrounds: 3425" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 979858.7836545728, |
| "unit": "iter/sec", |
| "range": "stddev: 1.9583009278486146e-7", |
| "extra": "mean: 1.020555223549976 usec\nrounds: 145943" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.717768854035093, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00037133612139495745", |
| "extra": "mean: 31.528068843744705 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12508.816594272885, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000036073931774760563", |
| "extra": "mean: 79.94361356755734 usec\nrounds: 3302" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.10344503346346, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005382919104048668", |
| "extra": "mean: 49.74271814285744 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 212.68125149753777, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005056017753375226", |
| "extra": "mean: 4.701871899656266 msec\nrounds: 289" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 188.3627523972336, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00007639564544060225", |
| "extra": "mean: 5.308905222892074 msec\nrounds: 166" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 968079.2484267106, |
| "unit": "iter/sec", |
| "range": "stddev: 2.8657478729273046e-7", |
| "extra": "mean: 1.0329732835665737 usec\nrounds: 166639" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.591512367849305, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0023095925263329473", |
| "extra": "mean: 46.314495388893796 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "eca7917e14dd523e7f048d9e53bd35a55bbf5283", |
| "message": "[mpact][file-formats] add matrix market and extended frostt utils (#66)\n\n* [mpact][file-formats] add matrix market and extended frostt utils\r\n\r\n* add mm back\r\n\r\n* add benchmark util dep to test", |
| "timestamp": "2024-07-30T16:32:45-07:00", |
| "tree_id": "6a52876d649b94ee6fc8a87d896059570a3171c6", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/eca7917e14dd523e7f048d9e53bd35a55bbf5283" |
| }, |
| "date": 1722382755308, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5914.089269005995, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000006207544946596451", |
| "extra": "mean: 169.08774191838907 usec\nrounds: 1918" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.47596113511465, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003280315876168108", |
| "extra": "mean: 29.005717812504273 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5671.871754573004, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00005037490581542402", |
| "extra": "mean: 176.30864082808995 usec\nrounds: 2464" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5713.32031009563, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00008044588444592375", |
| "extra": "mean: 175.02957049913098 usec\nrounds: 2766" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 943332.1798233077, |
| "unit": "iter/sec", |
| "range": "stddev: 2.0259622974613897e-7", |
| "extra": "mean: 1.0600719676363701 usec\nrounds: 146135" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.176506743812425, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004640359792791233", |
| "extra": "mean: 32.075434500001165 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12152.82118101611, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004941333927079426", |
| "extra": "mean: 82.28542040609446 usec\nrounds: 2852" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.841889368834504, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009961412782114644", |
| "extra": "mean: 50.398426349997294 msec\nrounds: 20" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 208.30234475482368, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006701236520992671", |
| "extra": "mean: 4.800714083065275 msec\nrounds: 313" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 186.8760133680631, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00022784912720946965", |
| "extra": "mean: 5.351141550897933 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 955837.5424754084, |
| "unit": "iter/sec", |
| "range": "stddev: 1.7599020963282733e-7", |
| "extra": "mean: 1.0462028907236898 usec\nrounds: 128966" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 19.17946487939754, |
| "unit": "iter/sec", |
| "range": "stddev: 0.003315302338347528", |
| "extra": "mean: 52.139098055555955 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "yinyingli@google.com", |
| "name": "Yinying Li", |
| "username": "yinying-lisa-li" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "6e2dc79d62c9ddaf18754c0b31ba1330855e627e", |
| "message": "Update regression-benchmark.yml (#67)\n\nNotify Reid for regression in PR comment.", |
| "timestamp": "2024-08-14T09:56:54-07:00", |
| "tree_id": "127b62a4602ee9b789c45299d6ed3ab208f85b61", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/6e2dc79d62c9ddaf18754c0b31ba1330855e627e" |
| }, |
| "date": 1723660632659, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6730.209940234418, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000007993033069341407", |
| "extra": "mean: 148.5837750798557 usec\nrounds: 1894" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 35.74876160326441, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00038259681939269765", |
| "extra": "mean: 27.972996969737956 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5894.952119312239, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003545673412430758", |
| "extra": "mean: 169.6366619711696 usec\nrounds: 2482" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5914.356700759963, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003549143614847271", |
| "extra": "mean: 169.08009621257798 usec\nrounds: 3014" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 977801.5550972892, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8820227749783258e-7", |
| "extra": "mean: 1.0227024029436138 usec\nrounds: 147646" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 32.68183908452969, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004854319782700403", |
| "extra": "mean: 30.59803328122257 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12367.043881966343, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000019841026616584518", |
| "extra": "mean: 80.86006725165767 usec\nrounds: 3242" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.107935645136358, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00126426284645496", |
| "extra": "mean: 49.731609333147865 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 209.26130356747225, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009297746972612424", |
| "extra": "mean: 4.778714377441356 msec\nrounds: 257" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 188.1909622486649, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00019604103659316013", |
| "extra": "mean: 5.31375145783386 msec\nrounds: 166" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 970370.95386269, |
| "unit": "iter/sec", |
| "range": "stddev: 1.859886996536609e-7", |
| "extra": "mean: 1.0305337314759555 usec\nrounds: 191939" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.272902892727608, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0038779119607092677", |
| "extra": "mean: 49.326926947335444 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "3a4ca0e26a751cd301a1b84050ebef0072ecd784", |
| "message": "[mpact] bump torch-mlir to @f72770a725ef07927b9b665843c936dba6ab1121 (#71)\n\n* [mpact] bump torch-mlir to @f72770a725ef07927b9b665843c936dba6ab1121\r\n\r\n* [mpact] adjust the backend and test for bump", |
| "timestamp": "2024-08-20T13:02:39-07:00", |
| "tree_id": "825cc6d10b7c4a38bd4125630ea0707671ec12cf", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/3a4ca0e26a751cd301a1b84050ebef0072ecd784" |
| }, |
| "date": 1724190186785, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6726.563466583287, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000010826518460399513", |
| "extra": "mean: 148.66432242375666 usec\nrounds: 1774" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.71353580174164, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005742517553490714", |
| "extra": "mean: 29.66167671883113 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5843.447166947576, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003671977748344111", |
| "extra": "mean: 171.1318629962675 usec\nrounds: 1803" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5890.996745777358, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000022828795495634557", |
| "extra": "mean: 169.7505605849801 usec\nrounds: 3812" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 985413.4611974261, |
| "unit": "iter/sec", |
| "range": "stddev: 2.0151571990931915e-7", |
| "extra": "mean: 1.0148024553925303 usec\nrounds: 134157" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 32.69386630763069, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003707409328088598", |
| "extra": "mean: 30.58677706058282 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12483.42522862938, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005046764167859775", |
| "extra": "mean: 80.10621938172936 usec\nrounds: 3241" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 18.910731231343814, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005116166413271155", |
| "extra": "mean: 52.880028157903176 msec\nrounds: 19" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 194.9335741904536, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0012587165990232047", |
| "extra": "mean: 5.129952621824818 msec\nrounds: 275" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 183.72712118378615, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00020110070060363835", |
| "extra": "mean: 5.442854563642124 msec\nrounds: 165" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 976634.638742426, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8642914616453563e-7", |
| "extra": "mean: 1.0239243626333596 usec\nrounds: 162023" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.739054795500312, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0011502371402031938", |
| "extra": "mean: 48.2182052104403 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "a5c7bfa6fe566c2065604f8892561ca16a4d43e3", |
| "message": "[mpact] bump torch-mlir to @b92e61832f85f35ec (#72)", |
| "timestamp": "2024-08-27T10:13:07-07:00", |
| "tree_id": "223b8ae0767a6a90babb3d7f83f42379d8715d92", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/a5c7bfa6fe566c2065604f8892561ca16a4d43e3" |
| }, |
| "date": 1724779551878, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6020.962344059295, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000059883528790397716", |
| "extra": "mean: 166.0864066002124 usec\nrounds: 1697" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 36.10155973561661, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005150833480676415", |
| "extra": "mean: 27.69963423528853 msec\nrounds: 34" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5940.974203423838, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003835876698407216", |
| "extra": "mean: 168.32256221945735 usec\nrounds: 2668" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5891.786731452907, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00004941253923273595", |
| "extra": "mean: 169.7278000002219 usec\nrounds: 2400" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 987933.4297848109, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8022626662534966e-7", |
| "extra": "mean: 1.0122139507090244 usec\nrounds: 147646" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 32.812913107117254, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004499927021638927", |
| "extra": "mean: 30.475806787879982 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12354.524580494592, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000059562901432246445", |
| "extra": "mean: 80.94200577971304 usec\nrounds: 3114" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.295362255585047, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0008144339001935827", |
| "extra": "mean: 51.825925149995555 msec\nrounds: 20" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 199.2530159731606, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005389328754834914", |
| "extra": "mean: 5.0187446102933775 msec\nrounds: 272" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 190.21873588712774, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00010598713423324759", |
| "extra": "mean: 5.257105696430353 msec\nrounds: 168" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 1129071.6661179548, |
| "unit": "iter/sec", |
| "range": "stddev: 8.14334988631514e-8", |
| "extra": "mean: 885.6833715775238 nsec\nrounds: 176026" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 22.72716253497586, |
| "unit": "iter/sec", |
| "range": "stddev: 0.001393856871036311", |
| "extra": "mean: 44.00021333332108 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "664f828a95fd68221dc33c459af603ba867101c6", |
| "message": "[mpact][test] add a count-equal idiom (for sparse consideration) (#73)\n\nThe equal operator currently does not sparsify under\r\nPyTorch, but if it were, this would be a great candidate\r\nto further optimize with doing the sum() without\r\nmaterializing the intermediate result!", |
| "timestamp": "2024-08-27T13:28:53-07:00", |
| "tree_id": "504e4d0cdab959c343e7ebff48a45f4b82a6a918", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/664f828a95fd68221dc33c459af603ba867101c6" |
| }, |
| "date": 1724790819818, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6050.659470930161, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000184565628199794", |
| "extra": "mean: 165.2712410613105 usec\nrounds: 1734" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.97567954004175, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005465872113972789", |
| "extra": "mean: 29.43281822579761 msec\nrounds: 31" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5557.791770595038, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00005546977041156382", |
| "extra": "mean: 179.92757578482224 usec\nrounds: 1148" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5616.631351823394, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00002913511759109151", |
| "extra": "mean: 178.04266247158236 usec\nrounds: 3099" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 961418.8730476055, |
| "unit": "iter/sec", |
| "range": "stddev: 1.8536670980732955e-7", |
| "extra": "mean: 1.040129363000849 usec\nrounds: 150785" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.907652554828182, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007091211167101815", |
| "extra": "mean: 31.340444060610867 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12629.889025175798, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004217342540703227", |
| "extra": "mean: 79.1772594364566 usec\nrounds: 2914" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.00783610902815, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009212474128569103", |
| "extra": "mean: 49.980417399999055 msec\nrounds: 20" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 199.42045652933882, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0009173406373704962", |
| "extra": "mean: 5.014530692606652 msec\nrounds: 257" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 187.91837121548917, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00010238249428346425", |
| "extra": "mean: 5.321459490798178 msec\nrounds: 163" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 921316.0419683264, |
| "unit": "iter/sec", |
| "range": "stddev: 3.040267017295168e-7", |
| "extra": "mean: 1.08540387277266 usec\nrounds: 114078" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.662496671787927, |
| "unit": "iter/sec", |
| "range": "stddev: 0.003815844732853682", |
| "extra": "mean: 48.39686200000099 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "26eb462a75e50d311bf334f19704440057f0f116", |
| "message": "[mpact] bump torch-mlir to @b3942ff984cdb44e3f (#74)", |
| "timestamp": "2024-09-03T13:01:56-07:00", |
| "tree_id": "f6363f6ef8074bddc967a0de7f9c6cdbcf122d67", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/26eb462a75e50d311bf334f19704440057f0f116" |
| }, |
| "date": 1725400019910, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6608.5235602338835, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000012999660023066775", |
| "extra": "mean: 151.31972987391586 usec\nrounds: 1688" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.85043887887076, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004723569816994782", |
| "extra": "mean: 29.54171446870646 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5438.001514440372, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00007225477239291452", |
| "extra": "mean: 183.89108523499752 usec\nrounds: 1232" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5616.977728861529, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000048754378955402405", |
| "extra": "mean: 178.0316832772424 usec\nrounds: 1885" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 867518.5803625713, |
| "unit": "iter/sec", |
| "range": "stddev: 2.1256613866638432e-7", |
| "extra": "mean: 1.1527130630240328 usec\nrounds: 156446" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.58257711288872, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005082459069682249", |
| "extra": "mean: 31.66302725789607 msec\nrounds: 31" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12672.286852141515, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005175886824330942", |
| "extra": "mean: 78.91235509958553 usec\nrounds: 3202" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.551174021031756, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0010404900039996526", |
| "extra": "mean: 51.14782359996752 msec\nrounds: 20" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 196.57546822076378, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005790844400840762", |
| "extra": "mean: 5.087104759567209 msec\nrounds: 262" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 184.4526779027448, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00008750977479085007", |
| "extra": "mean: 5.4214447378598845 msec\nrounds: 164" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 868132.387859167, |
| "unit": "iter/sec", |
| "range": "stddev: 1.732795357918776e-7", |
| "extra": "mean: 1.1518980445667064 usec\nrounds: 136725" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.444961736265242, |
| "unit": "iter/sec", |
| "range": "stddev: 0.002911595575768531", |
| "extra": "mean: 46.63099949993921 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "c21ae8604891021c4025ae7835b0efb6cc516016", |
| "message": "[mpact][compiler] re-enable sparse addition tests (#75)\n\nAll PyTorch related fixes are committed to upstream\r\nPyTorch dev branch, so we can run all the tests again", |
| "timestamp": "2024-09-03T15:16:04-07:00", |
| "tree_id": "653f90feced3bb5de7e7922b94a49dd16765de37", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/c21ae8604891021c4025ae7835b0efb6cc516016" |
| }, |
| "date": 1725402020088, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5984.604402864983, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004773741454056456", |
| "extra": "mean: 167.0954223008081 usec\nrounds: 1982" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.89539889357125, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00046478152323981605", |
| "extra": "mean: 28.657073187497772 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 6071.164975976731, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000037416318029174416", |
| "extra": "mean: 164.71303348812717 usec\nrounds: 2150" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5268.847212471226, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000034164794229824113", |
| "extra": "mean: 189.79483740447543 usec\nrounds: 2374" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 875386.0539375842, |
| "unit": "iter/sec", |
| "range": "stddev: 2.0204369637331367e-7", |
| "extra": "mean: 1.1423531315148194 usec\nrounds: 144238" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.391055873061557, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00035675118926051014", |
| "extra": "mean: 31.85620783333244 msec\nrounds: 30" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12574.209947811167, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005106988003315575", |
| "extra": "mean: 79.52785933672702 usec\nrounds: 3256" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.93248175538609, |
| "unit": "iter/sec", |
| "range": "stddev: 0.001036558393310738", |
| "extra": "mean: 50.169367380947605 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 194.33308860500836, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0008889728885080983", |
| "extra": "mean: 5.145804078854269 msec\nrounds: 279" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 187.16066454664005, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00020579674692953573", |
| "extra": "mean: 5.343003041917507 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 871690.1013576641, |
| "unit": "iter/sec", |
| "range": "stddev: 2.138761759236975e-7", |
| "extra": "mean: 1.1471966911663816 usec\nrounds: 184843" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.531835619041946, |
| "unit": "iter/sec", |
| "range": "stddev: 0.005220279923927693", |
| "extra": "mean: 46.44285873683884 msec\nrounds: 19" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "cfdd4a37016bb7c8478527d37b73e59583951279", |
| "message": "[mpact][compiler] extract linalg module import into own method (#76)", |
| "timestamp": "2024-09-09T12:54:14-07:00", |
| "tree_id": "baf2a271d652cc711304f0b470897078189abb82", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/cfdd4a37016bb7c8478527d37b73e59583951279" |
| }, |
| "date": 1725911972518, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5984.307610535823, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005396728879561781", |
| "extra": "mean: 167.10370941484106 usec\nrounds: 1965" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 35.213679611399876, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00034794632331655665", |
| "extra": "mean: 28.398054705883837 msec\nrounds: 34" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5844.122925543725, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00004106105544141608", |
| "extra": "mean: 171.11207494099077 usec\nrounds: 1708" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5773.681589720597, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000036047321598158825", |
| "extra": "mean: 173.1997139884523 usec\nrounds: 1923" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 853095.7827844535, |
| "unit": "iter/sec", |
| "range": "stddev: 2.3056037399383262e-7", |
| "extra": "mean: 1.172201316874478 usec\nrounds: 145497" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 32.92338635808723, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0003340834271926319", |
| "extra": "mean: 30.373546303032775 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12541.904006539186, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000004140341102795112", |
| "extra": "mean: 79.73271039856573 usec\nrounds: 3087" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.936657536483768, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0010802672298394177", |
| "extra": "mean: 50.15885928571606 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 195.50824812526918, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0006824320098335556", |
| "extra": "mean: 5.114873718060549 msec\nrounds: 227" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 190.3127017174977, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00020254360028272055", |
| "extra": "mean: 5.254510029942254 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 858024.431855418, |
| "unit": "iter/sec", |
| "range": "stddev: 2.7853983511739526e-7", |
| "extra": "mean: 1.1654679783856152 usec\nrounds: 159439" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.887555643635324, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0031078451677412616", |
| "extra": "mean: 47.87539610000806 msec\nrounds: 20" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "403b89ab41116c776eadfb820fe60913ca9db50f", |
| "message": "[mpact][external] bump torch-mlir to @6934ab81b0efe105a4800 (#77)\n\nNote that this is actually to get the\r\nbump llvm/llvm-project@b6603e1 so we\r\ncan proceed with parallelization", |
| "timestamp": "2024-09-11T23:55:32-07:00", |
| "tree_id": "dbe6a99ce84898e6d741974bcbe8fe725070267f", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/403b89ab41116c776eadfb820fe60913ca9db50f" |
| }, |
| "date": 1726130264834, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 5880.22273057667, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005747201264405737", |
| "extra": "mean: 170.06158538860834 usec\nrounds: 1985" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 34.74348405826911, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0004076555335279264", |
| "extra": "mean: 28.782375374987623 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 5905.171066717692, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00003325796699268225", |
| "extra": "mean: 169.3431043236206 usec\nrounds: 2473" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5838.5530347877, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00002769470012890522", |
| "extra": "mean: 171.27531325685075 usec\nrounds: 3569" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 861017.9499771309, |
| "unit": "iter/sec", |
| "range": "stddev: 2.3005870367371787e-7", |
| "extra": "mean: 1.1614159728337379 usec\nrounds: 114469" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.799853250085047, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00041125989025708385", |
| "extra": "mean: 31.446685999952706 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12427.09635712358, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000005585997139614233", |
| "extra": "mean: 80.46932052850546 usec\nrounds: 3070" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 20.075227153039297, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0010209501300545074", |
| "extra": "mean: 49.81263685719265 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 203.67254016890678, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00048136664868827383", |
| "extra": "mean: 4.9098420394359215 msec\nrounds: 279" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 187.7039387130781, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00011991751551451542", |
| "extra": "mean: 5.327538712592427 msec\nrounds: 167" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 841734.075128053, |
| "unit": "iter/sec", |
| "range": "stddev: 1.889107373087626e-7", |
| "extra": "mean: 1.1880236639438293 usec\nrounds: 133281" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 21.945676409007767, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00048762387827381654", |
| "extra": "mean: 45.56706211112922 msec\nrounds: 18" |
| } |
| ] |
| }, |
| { |
| "commit": { |
| "author": { |
| "email": "ajcbik@google.com", |
| "name": "Aart Bik", |
| "username": "aartbik" |
| }, |
| "committer": { |
| "email": "noreply@github.com", |
| "name": "GitHub", |
| "username": "web-flow" |
| }, |
| "distinct": true, |
| "id": "556009cda5b9d1befb943cb439d5aab5aaa28a7b", |
| "message": "[mpact][compiler] add stable hlo pipeline (#78)\n\nadds a lowering to stable hlo method in addition\r\nto lowering to linalg; note that this can be used\r\nas an alternative path into the mpact pipeline", |
| "timestamp": "2024-09-12T13:03:26-07:00", |
| "tree_id": "c132dfa864fb1eb3817199a6a466dbc3d04707bf", |
| "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/556009cda5b9d1befb943cb439d5aab5aaa28a7b" |
| }, |
| "date": 1726171670822, |
| "tool": "pytest", |
| "benches": [ |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", |
| "value": 6646.579164247324, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000006182923038083194", |
| "extra": "mean: 150.45333475889512 usec\nrounds: 1870" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", |
| "value": 33.44298782328942, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005074393597061762", |
| "extra": "mean: 29.90163454545196 msec\nrounds: 33" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", |
| "value": 4970.319979551754, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0000808525090647376", |
| "extra": "mean: 201.19429012901992 usec\nrounds: 1003" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", |
| "value": 5558.053722146078, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000034640726148464404", |
| "extra": "mean: 179.91909578266535 usec\nrounds: 2798" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", |
| "value": 829999.6467168161, |
| "unit": "iter/sec", |
| "range": "stddev: 2.3605975930713207e-7", |
| "extra": "mean: 1.2048197899308088 usec\nrounds: 136352" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", |
| "value": 31.475469546581827, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0005501207767812787", |
| "extra": "mean: 31.770773062497426 msec\nrounds: 32" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", |
| "value": 12326.731020357509, |
| "unit": "iter/sec", |
| "range": "stddev: 0.000008093830561403162", |
| "extra": "mean: 81.12450887007327 usec\nrounds: 3044" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", |
| "value": 19.894403028680408, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0011684904009305079", |
| "extra": "mean: 50.26539366666936 msec\nrounds: 21" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", |
| "value": 202.74269097694668, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0007228784376801891", |
| "extra": "mean: 4.932360299556778 msec\nrounds: 227" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", |
| "value": 185.55104593619325, |
| "unit": "iter/sec", |
| "range": "stddev: 0.00007714804693757229", |
| "extra": "mean: 5.389352536141871 msec\nrounds: 166" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", |
| "value": 820980.7220351726, |
| "unit": "iter/sec", |
| "range": "stddev: 2.5644396420797874e-7", |
| "extra": "mean: 1.2180553978430175 usec\nrounds: 95148" |
| }, |
| { |
| "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", |
| "value": 20.01659668739807, |
| "unit": "iter/sec", |
| "range": "stddev: 0.0013845172737135196", |
| "extra": "mean: 49.95854268421035 msec\nrounds: 19" |
| } |
| ] |
| } |
| ] |
| } |
| } |